If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-11x+72=7x
We move all terms to the left:
x^2-11x+72-(7x)=0
We add all the numbers together, and all the variables
x^2-18x+72=0
a = 1; b = -18; c = +72;
Δ = b2-4ac
Δ = -182-4·1·72
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6}{2*1}=\frac{12}{2} =6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6}{2*1}=\frac{24}{2} =12 $
| 103=4x+3 | | ?+9x?-6=70 | | v/2=-10 | | 2(2r+1)=3(r-4) | | 100-4x=106-7x | | 4(2k-5)=5k+4 | | (10/4)x=0,25 | | 32(5+4d)=2+1d | | 3d=–3 | | (5.8/3)t+6=3.8t+4.32 | | 70=4a-4 | | 81=(7x-3) | | 6x+20+2x=42 | | -9x+5x=32 | | -9+4x=50 | | (15x-33)=(10x+22) | | 6(-x+1)=-3(2x-2) | | 4-2r=-1r-5 | | 55=15+8x-8 | | 4-2r=-1r-5 | | 55=15+8x-8 | | 2(x+3)-4=3(x+2) | | 2(x+3)-4=3(x+2) | | (9x-12)°=(5x-4)° | | -11x-8=−9 | | 3x=7(x+4) | | 3x=7(x+4) | | 6x+10+2x-20=180 | | 6x+10+2x-20=180 | | 6x+10+2x-20=180 | | 6x+10+2x-20=180 | | 22x+198=506 |